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The selection of stopping time (i.e., scale) significantly affects the performance of anisotropic diffusion
filter for image denoising. This paper designs a Markov random field (MRF) scale selection model, which
selects scales for image segments, then the denoised image is the composition of segments at their
optimal scales in the scale space. Firstly, statistics-based scale selection criteria are proposed for image
segments. Then we design a scale selection energy function in the MRF framework by considering the
scale coherence between neighboring segments. A segment-based noise estimation algorithm is also
developed to estimate the noise statistics efficiently. Experiments show that the performance of MRF
scale selection model is much better than the previous global scale selection schemes. Combined with
this scale selection model, the anisotropic diffusion filter is comparable to or even outperform the state-
of-the-art denoising methods in performance.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Scale space method has been widely investigated in the field of
image filtering [1], edge detection [2-4], feature detection [5-7]
and data mining [8]. Diffusion filter is an important scale space
method widely used in image denoising. Taking noisy image as
initial condition, diffusion filter gradually removes the noises and
details from the noisy image. The diffused images with increasing
scales constitute a diffusion scale space [1,9]. The isotropic
diffusion scale space [10] is governed by the heat equation, which
diffuses image isotropically in each local direction, so it smooths
out details when removing noises. Perona and Malik [11]
proposed anisotropic diffusion model with diffusion coefficients
spatially varying to better preserve details. Rudin et al. [12]
designed total variation diffusion scheme constrained by noise
statistics [13,14]. Many other types of PDE diffusion filters were
also designed [15-18].

In this paper, we concentrate on the anisotropic diffusion scale
space, which is controlled by anisotropic diffusion equation [19]:
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An essential problem of diffusion equation for denoising is how to
select the optimal scale, i.e., stopping time, to get satisfactory
result. This is usually called scale selection problem. It can be
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formulated as follows. Given the scale space {u(x,t)}o<¢< 4o
induced by anisotropic diffusion equation, the aim is to find the
optimal stopping time t’, at which the denoised image u(x,t) is
most similar to the original non-degraded image. When selecting
small stopping time, the noises are not adequately smoothed out,
but when selecting large stopping time, image details are also
removed. So the scale selection problem significantly affects the
performance of diffusion filter, and there is a trade-off between
removing noises and preserving details.

It is non-trivial to select the optimal scales for anisotropic
diffusion filter. Much work have been done to solve this problem.
Dolcetta and Ferretti [20] formulated the scale selection problem
as the minimization of an energy function combining computing
cost and stopping cost. Carefully balancing these two terms is
necessary to achieve desired result. Weickert [21] proposed a
signal to noise ratio (SNR) criterion to select the optimal stopping
time t*, at which the denoised image u(x,t*) satisfies

Var(u(x,t*)) 1
Var(u(x,0)) ~— 1+1/SNR’

(2)

This criterion can well select the optimal scale because the SNR
value of the noisy image is known. Solo [22] proposed to select
scale by designing a simple quadratic measurement of the
reconstruction quality, which can be computed by SURE (Stein’s
unbiased risk estimator). Mrazek [23] designed a scale selection
criterion to choose the optimal scale when the correlation
between the diffused image and removed noises is minimized:

t* = argmin Cov(u(x,0)—u(x,t),u(x,t)) .
=0 /Varu(x,0)—u(x,b)Var(u,r))

3)
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This scheme is very simple and does not assume any noise
statistics or SNR of the noisy image, however the correlation
criterion is not strongly related to the denoising quality.
Papandreou [24] developed a scale selection scheme by cross-
validation. It divides the image region into training set and test
set, the scale is selected by minimizing L, or L, error measure-
ment on the test set. This scheme is well founded on the statistical
learning theory, however, it is still hard to guarantee that the
selected scale is optimal. Total variation (TV) model [12] uses
noise statistics to constrain the TV diffusion process and makes it
converge to the steady state, in which the removed noises satisfy
known noise statistics. This can also be seen as a scale selection
scheme, which is similar to SNR criterion.

Most of the previous work select a global stopping time for the
entire image. The global scale selection scheme has the following
problem. See Fig. 1 for example, the optimal scale is computed for
the entire image region, a smooth region (in red rectangle) and a
textured region (in blue rectangle). Scale is selected to minimize
the mean squared error (MSE) between the diffused image and
the original non-degraded image. Fig. 1(c) shows that the optimal
scale of the smooth region is 42.2. The optimal scale of the
textured region is 14.8, which is much smaller than that of the
smooth region. This means that, the diffusion process should stop
early in the textured region to better preserve image details and
stop late in the smooth region to adequately remove noises. The
optimal scale for the entire image is 25.0, which is the result of
balancing the scale selection in both smooth regions and textured
regions.

The above observation motivates us to design a segment-based
scale selection model in this paper. We segment the image into
small regions, and select different scales for different regions. The
final diffused image is the composition of the segments at their
optimal scales in the scale space, instead of a single anisotropic
diffusion filtering result at a global optimal scale. The advantages
of this scheme are as follows. Firstly, the textured regions and
smooth regions are segmented and assigned labels separately.
This overcomes the balancing effect over the textured and smooth
regions caused by the global scale selection scheme. Secondly, this
segment-based image representation helps us to design a better
noise estimation algorithm, which is required by our scale
selection model.

Considering scale coherence between neighboring segments,
we propose a Markov random field (MRF) scale selection model
finally. The MRF model is a popular framework for graph labeling
problem in recent years, and was widely investigated in the image
segmentation [25-28], digital photomontage [29], stereo vision
[30], texture synthesis [31], and so on. Using this framework, we
naturally incorporate scale coherence constraint over the neigh-
boring segments into the scale selection problem. Then the scale
selection model prefers the similar scale labels for appearance-
similar neighboring segments and different scale labels for
neighboring segments across image edges.

Compared with the previous scale selection schemes, our MRF
scale selection model significantly improves the performance of
anisotropic diffusion filter for image denoising. Experiments on
natural images show that the image textures are better preserved
and noises are adequately removed in the final denoised image.
The peak signal to noise ratio (PSNR) values of our results by
combining anisotropic diffusion with MRF scale selection model
are comparable to or even better than the other state-of-the-art
denoising algorithms.

The workflow of anisotropic diffusion filter combined with
MRF scale selection model is illustrated in Fig. 2. Firstly we
gradually diffuse the input image by anisotropic diffusion to
construct a discrete scale space, and over-segment the diffused
image at the largest scale T into segments with homogenous
spatial coordinates and color/intensity values. Then we estimate
the noise statistics by segment-based noise estimation algorithm.
Using this statistics, we select scales for segments by MRF scale
selection model. The final output image is the fusion of the
diffusion scale space by composing the segments at their optimal
scales in the scale space.

We will introduce each components of this workflow in the
following sections. In Section 2, we briefly review the anisotropic
diffusion filter and introduce how to construct anisotropic
diffusion scale space. In Section 3, we firstly design the over-
segmentation algorithm, then propose scale selection criteria
for each segment, finally construct MRF model to fuse the
diffusion scale space. In Section 4, we propose a segment-based
noise estimation algorithm. In Section 5, comparisons with the
pervious scale selection schemes and denoising algorithms are
represented.
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Fig. 1. Scale selection for image and its sub-regions: (a) original image; (b) noisy image with noise standard deviation 30 and (c) MSE with respect to increasing scales for
entire image region, blue region and red region. The optimal scales for entire image region, red region and blue region are 25.0, 42.2 and 14.8. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Algorithm workflow. Noisy image is firstly diffused to generate a scale space, and over-segment the diffused image at largest scale T. Then we estimate the noise
statistics by segment-based noise estimate algorithm. Using this statistics, we select scales for segments by MRF scale selection model. The final output image is the

composition of the segments at their optimal scales in the scale space.

2. Anisotropic diffusion scale space

Anisotropic diffusion equation can be viewed as the gradient
descent flow to minimize the energy functional:

E(u) = p(|Vu?). (4)

Its gradient descent flow is controlled by anisotropic diffusion
equation:

du(x,t)
de

It is same as defined by Eq. (1) when g(|Vu|) = p'(|Vu/?). The input
noisy image is taken as its initial condition, and reflection
boundary condition is used. g(-) is selected as a decreasing
function which satisfies g(r)—0, as r— +oo.

As the scale t increases, the multi-scale analysis of the image is
performed. The diffused images {u(x,t)}o<:-~ With increasing
scales constitute a scale space, which is called anisotropic
diffusion scale space. The steady state will be flat image or
piecewise smooth image [32,33].

Numerically, this diffusion equation can be implemented by

=div[p'(|Vu*)Vul. )

ut (i) = u' (i) + g Vu'(i+1/2,))
x (U I+ 14)—u' (i) +(Vu'(i—1/2))
x (Ut (i-1)—u' (i) +g( Vu'(ij+1/2)))
x (U (ij+1D—u' (i) +&( Vu'(ij—1/2)]) x W' ij—D—u'@j)l.  (6)

We set 7 =0.15, and diffuse the image until scale T at which the
image is over-smoothed (see Fig. 3(a) for example), then a
discrete scale space can be constructed before this scale T. The
scale T is selected when the variance of the removed noises is
larger than the added noise variance (1.1 times of the added noise
variance is set in our implementation). A basic wavelet domain
noise estimation algorithm [34] is used to estimate the noise
variance in this step, a more sophisticated noise estimation
algorithm will be designed for scale selection in Section 4.

We further discretize the scale space into N frames, in which
each frame is defined as a diffused image at a certain scale. So the
scale interval is At=T/N. Then we construct a spatial and time
discrete anisotropic diffusion scale space:

S={u(,H}¢ = ac2ac,. NAE- )

3. Scale selection model

In this section, we introduce the segment-based scale selection
model. Firstly we over-segment the image into a collection of
segments with homogenous spatial coordinates and color/inten-
sity values. Then we design the scale selection criteria to select
scale for each segment. Finally, we develop a MRF scale selection
model on the graph over image segments, and minimize it by
tree-reweighted message passing algorithm.

3.1. Image over-segmentation

Directly over-segmenting the noisy image is not robust due to
noises, so we over-segment the over-smoothed image at scale T
into segments. We use k-means algorithm with five dimensional
features consisted of color and spatial position (r,g,b,x,y) to over-
segment the image [35,36]. To initialize the k-means algorithm,
we regularly segment the image into 16 x 16 blocks as initial
segmentation. Then iteratively update the clustering until
convergence. Fig. 3(b) shows an example of over-segmentation.

Denote the image region as €, and each segment as S,
i=1,...,K K is the total number of segments. Obviously, Q = J;S;.
Given this representation, we will present our segment-based
scale selection model.

3.2. Scale selection criteria for each segment

We now develop scale selection criteria to select scale for each
segment. A basic observation is that the pixels in each image
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Fig. 3. Comparison between global scale selection scheme and segment-based scale selection model (the added noise standard deviation is 35): (a), (b) image over-
segmentation at scale T, (c), (d) global optimal scale map and the denoised image, (e), (f) scale map and denoised image by segment-based scale selection without scale

coherence, (g), (h) scale map and denoised image by MRF scale selection model.

segment are similar in their color/intensity values, so we can
reasonably assume that image signals in each segment obey a
Gaussian distribution.

We deal with additive noises in this paper. The image
degradation by additive noises is modeled as

Up=u*+n, 3

where u* is the original non-degraded image, u, is the noisy image
and n is assumed to be the additive Gaussian noise. In each
segment S;, we denote the variance and mean of u,, by 2 and g, the
noise variance of n by X, (assumed to be known in this section),
and the variance and mean of u* by X and . Based on the image
degradation model in Eq. (8), we deduce that

2=25+2n, (9)

To select scale for image segment, we should measure the
denoising quality of the diffused image at a certain scale. We first
analyze the following error measurement between the diffused
image at scale t and the original non-degraded image:

Err(u*(x),u(x,t)) = E{(u*(x)—u(x,t))z}, a1

where E(-) means expectation. The aim of scale selection is to
minimize this error measurement. However the original non-
degraded image is unknown, so we analyze the difference
between the denoised image u(x,t) and the noisy image u,(x)

instead:

E{(u(x,t)—Un(x)))*} = E{(u(X,)—U* (X) + U (X)—Un(x))*}

= E{(u(x,H)—u*(x)*} + E{(u* (x)—un(x))*}
+ 2E{(u(X,H)—u* (X),u* (X)—Un(X))}. 12

In bias and variance trade-off analysis, u*(x) is assumed as
deterministic constant, so the covariance term vanishes. But we
have assumed that u*(x) is also a Gaussian distribution random
variable in each segment. Therefore, to minimize E{(u(x,t)—
u*(x))?}, we expect

[E{(u* (x)—n(%))*} —E{(u(x,t)—tn(x))*}]
+ 2E{(u(x,t)—u*(x),u*(x)—un(x))} = 0. (13)

We expect both of these two terms in Eq. (13) equal to zero:

E{(un(®)—u*(x))*}—E{(Uun()—u(x,0))*} =0, (14)

E{ux,tn)—u@),u" ()—ua(x))} =0, 15)

where E{(u;(X)—u*(x))*} = X,,. The first term equals to zero when
the removed noises u,(x)—u(x,t) obey the known noise distribu-
tion, i.e., N(0,2,). The second term equals to zero when
u(x,t)=u*(x), which is unachievable because it is the target of
image denoising. Instead of expecting u(x,t)=u*(x), we expect
their distributions are same. We find that these two criteria are
reasonable for scale selection and complementary to each other.
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The first criterion means that the removed noises should obey the
noise distribution, and the second criterion means that the signal
of the final diffused image should obey the distribution of original
image signal in each segment.

In summary, the criteria of scale selection for each segment S;
are

Un(x)—u(x,t) ~ N(0,% ), (16)

u(X,t) NN(,us)ZS)v (1 7)

in which pu;=u and 25=2>-%,. We use Kullback-Leibler (K-L)
distance to model the distance between the estimated distribu-
tion and the target distribution. Take the second criterion as an
example, we estimate the parameters of Gaussian distribution for
each segment S; as

N 1
ftg= o7 > uxb)
ISil

xeS;
- 1 N N
o= o > D)t —f),
ISil = 3
where |.| means number of pixels. Then the K-L distance

between the estimated image signal distribution and true image
signal distribution for segment S; at scale t; is

G(u,b); fis,25)

KLs(ti:Sp = 3 | Glueet): s, 2s)logy oo AL

xeS;

(18)

where G(-) is probability distribution function of Gaussian
distribution. We can similarly define the distance KL(t;;S;) for
the first criterion.

We combine these two K-L distances as the scale selection cost
for segment S; at scale t;:

1 KLs(t;S) 1 KLe(t;S)
25 KLt S) T 25 KL(£:S)

Dy(t;; Si) = (19)
Then the optimal scale for S; is selected as the scale minimizing
Dy(t;S;):

tr = argmin{D;(t;; Sy)}. @0
t

After selecting optimal scales for all the segments, the final output
diffused image is the composition of the segments at their optimal
scales in the diffusion scale space.

Figs. 3(e) and (f) show the scale selection results by this scale
selection criteria. Figs. 3(c) and (d) give the results of ideal case of
global scale selection scheme, i.e., selecting scale when the
diffused image is most similar to the original image. Compared
with the ideal case of global scale selection scheme, the MSE value
of the result by this criteria is much lower.

We find that selecting scale for each segment separately causes
scale inconsistency between neighboring segments. See Fig. 3(c)
for example, some appearance-similar and neighboring segments
are assigned significantly different scales, which will cause
artifacts in the final output diffusion result. That is because our
scale selection model for each segment is to measure the
similarity between the noises or signal distributions and the
corresponding known distributions. But in some segments with
typically hundreds of pixels, the statistical distributions cannot be
estimated accurately due to limited samples. Then wrong scale
labeling will appear.

3.3. Scale selection by super-pixel MRF model

We use Markov random field (MRF) [37,38] model to
regularize the scale selection problem. Scale coherence between
neighboring segments is considered in the MRF framework.

The MRF model is defined on a graph G=(¢).
V= {vy,v2,...,Vg} is denoted as a set of graph nodes. In this paper,
the graph is constructed on image super-pixels, i.e., image
segments. So each node v; in the graph represents a segment S;
in the image, and the total number of segments is K. We focus our
discussion on the pairwise Markov network, so £ is a set of
pairwise edges between these neighboring segments. This super-
pixel MRF graph is illustrated in Fig. 4.

Each segment S; is related to a random variable X;, and the field
of random variables is denoted as X={X;,X>,...,Xk}. Each random
variable X; takes a value t; from the index set of frames {1,...,N} in
the discrete scale space. Then t={ty,t5,...,tx} is a configuration of
X, its joint probability is defined as

Pr(X =t)oc | [exp(—Diti:Si)) [] exp(—Vijtit;: Si5p). @n
ieV ij)eé

Maximizing this probability is equivalent to minimize its minus
logarithm:

E(t) = "Di(t;: S+ Y Vij(tint;: Si.S). 22)

ieVy (ij)e&

The first term in Eq. (22) is same defined as Eq. (19). It is a penalty
function measuring the cost of a segment S; with scale label ¢;. The
second term in Eq. (22) is a pairwise smoothness function of two
neighboring segments with scale label ¢; and t;, respectively.

For neighboring segments S; and S;, we define the smoothness
function as

|(S)— ()1
Vii(titi: Si.55) = [1—(tit; S o o L 23
il Sioy) = =o(t tf)]exp( 24 (US) -S> )
where
1 ifti=t,
5(ti’tj):{0 otherwise. 24

1(S;) is the mean color or intensity on segment S;, and ¢ - > means
expectation. This term constrains the scale coherence between
two appearance-similar segments S; and S;, and relaxes this
tendency when S; and S; are significantly different. In other words,
it penalizes different scale labeling between pairs of appearance-
similar segments, and prefers different scale labeling for pairs of
appearance-different segments. This type of definition of smooth-
ness term is also investigated in [25-27,30].
The final MRF scale selection model is defined as

1 KLs(t;; ;) 1 KL (t;S) ]
E=S"|2 1
© zl: [2 S KL(E:S) T 25, KLA(E:S)

|u(SH—u(S)I> )}
+2. 3 |a=dtiexp | ——— I ) | 25
jeN(i)|:( (6l xp< (uS)—(S)) »2 @)

After minimizing this energy function, the optimal scale for
segment S; is t; x At. Then the segment S; in the output denoised
image is coming from the same segment in the scale space frame
at S;/s optimal scale.

The energy function of Eq. (25) is a typical model for graph-
labeling problem in MRF framework, which is widely viewed as
an intractable NP-hard problem. Recently, algorithms such as
graph cut [39,40], loop belief propagation [41,42] or tree-
reweighted message passing algorithm [43,44] have been de-
signed to efficiently optimize this MRF energy function. It is
proved that both graph-cut algorithm and tree-reweighted
message passing algorithm (TRW) achieve high-quality optimiza-
tion results [45] for MRF energy function.

In this paper, we use the TRW algorithm to optimize Eq. (25),
which is a recently developed message passing algorithm for
optimizing MRF energy function. This algorithm stems from the
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Fig. 4. Super-pixel Markov random field graph. The graph nodes are the segments of the image, and the graph edges are connections between neighboring segments. Each

segment is assigned a scale in the scale space.

study of Wainwright et al. [43], in which they deduced a lower
bound for MRF energy function, then tree-reweighted max-product
message passing algorithm was designed to optimize the MRF
energy by maximizing its lower bound. This algorithm consists of a
class of message passing algorithms to find a collection of tree
structured distributions with a common optimum. Kolmogorov
[44] developed a modification of this algorithm, and it guarantees
to increase the lower bound in each iteration. We use the improved
version of TRW in our implementation, and the G+ code is available
at http://www.adastral.ucl.ac.uk/~ vladkolm/papers/TRW-S.html.

Figs. 3(g) and (h) show the scale selection results of the MRF
scale selection model. Because scale coherence between neigh-
boring segments is considered, a more reasonable scale map is
inferred. It has smooth scale labels in the smooth regions and
discontinuous scale labels across edges. Since the scale coherence
is constrained and the segment boundaries are generally aligned
with image edges, the final composition of the scale space has rare
artifacts. The MSE of the final result with respect to the original
image is further decreased compared with the result of segment-
based scale selection without scale coherence.

4. Segment-based noise estimation

Same to the SNR scale selection criterion, our segment-based
MRF scale selection model also assumes the noise variance is
known. However in real cases, the noise variance is unknown. In
this section, we will develop a segment-based noise estimation
model in the wavelet domain.

We first review the methodologies of noise estimation. Some
commercial softwares, for example Neatlmage, estimate noise
variance by selecting a smooth region from the image, then take
the noise variance in that region as the noise variance of the
image. Donoho [34] estimated noise variance by computing
the median absolute deviation (MAD) value of the wavelet
coefficients, which is a popular used method in image denoising.

Stefano [46] proposed a training-based noise estimation method
in the wavelet domain. Obviously, the accuracy of noise estima-
tion relies on the selection of the training set. Ce [36] proposed a
segment-based noise estimation model which focuses on CCD
noises, i.e., intensity dependent noises. In this paper, we will
develop a simple but effective noise estimation algorithm in the
wavelet domain for additive noises.

Firstly, we introduce the idea of MAD noise estimation
method. This method estimates the noise variance in the HH
sub-band of the wavelet transform of the image, because the
wavelet coefficients in that sub-band are mainly caused by the
high-frequency noises. The squared root of noise variance is
estimated as

o = MAD(W)/0.6745, (26)

where W is the wavelet coefficients in the HH sub-band of
wavelet transform. This method tends to over-estimate the noise
variance. That is because the high-frequency details in the natural
images will also produce non-zero wavelet coefficients in the HH
sub-band of the wavelet transform. Especially when the noise
variance is relatively smaller than the variance of the high-
frequency details in the image, then the noise variance will be
seriously over-estimated.

The over-estimation effect of the MAD noise estimation
method can be alleviated by the segment-based image represen-
tation. The marginal distribution of the wavelet coefficients of
natural image is generally a non-Gaussian heavy-tailed distribu-
tion [47-49]. This sparseness prior means that most of the
wavelet coefficients of natural image are zero. So we discard
the high-frequency regions of natural image and only use the
low-frequency regions for better noise estimation.

This idea of noise estimation can be robustly implemented by
the following procedures. We firstly estimate noise variance on
each image segment by MAD noise estimation method. Discard
the segments with variance largely deviating from the mean
variance, then take the mean variance on the remaining segments
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Fig. 5. Test images.

as the estimated noise variance. We iterate this procedure until
convergence or reaching the maximal iterations (maximal 10
iterations is set in our implementation). The pseudo-code of this
segment-based noise estimation algorithm is stated as follows.

Algorithm of segment-based noise estimation:

e Input: Noisy image u, and its segments set {S;}, i=1,2,...,K.

e Step 1: Transform image by Daubechies wavelet transform.
Denote the wavelet coefficients in the HH sub-band by W.

e Step 2: Estimate noise variance ¢? by Eq. (26) on each segment
Si. Then compute the mean value p, and standard deviation 7,
on the set {01,02,...,0¢}. Initialize ¢ =y, set I=1, £=0.01,
e=2¢ L=10.

e Step 3: While I <L and e > ¢, iterate the following procedures:
Step 3a: Set 6,4 = 0. Discard the segments with variance ¢?
satisfying |o;—u,| > 274, then re-estimate u, and 1, on the
remaining segments.

Step 3b: Set ¢ = p,, compute e =|c—0qql, [=1+1.

e Output: Output the estimated noise variance o2.

5. Experiments

We use natural images to test the MRF scale selection model.
These images are collected from the denoising benchmarks
(http://decsai.ugr.es/ ~javier/denoise/index.html) and Berkeley
segmentation data set (http://www.eecs.berkeley.edu/Research/
Projects/CS/vision/grouping/segbench/). The Berkeley segmenta-
tion data set is composed of natural color images with
hand-labeled segmentation masks. Recently, these natural images
are also widely used for testing the algorithms in image denoising
[50,51,36] and inpainting [50] due to their rich textures and
colors. Fig. 5 lists all of the test images.

We will compare the performance of MRF scale selection
model with the previous scale selection schemes, and also
compare the denoising performance of anisotropic diffusion filter
using MRF scale selection model with the state-of-the-art
denoising algorithms. For the color images, the noise and signal
distributions in R, G, B channels are assumed as independent, then
25 and X, are diagonal three-dimensional matrices.

5.1. Noise estimation evaluation

We firstly evaluate the segment-based noise estimation
algorithm. To measure the accuracy of noise estimation, we
define the mean absolute deviation (MAD) between the estimated
noise standard deviations and the true noise standard deviations
as the error measurement. Under the added noise standard
deviation oo, the MAD error of noise estimation is defined as

12
2.i2110i=00l

MAD(go) = 2 ,

(27)
where ¢; is the estimated noise standard deviation for the i-th
image in the test set.

We compare the segment-based noise estimation algorithm
(Wav_Seg) with the classical wavelet domain MAD noise estima-
tion algorithm (Wav). Table 1 lists the MAD errors for different
noise levels! varying from 5 to 50. Fig. 6 plots these MAD errors.
As we can see from Table 1 and Fig. 6, as the noise standard
deviation increases, the segment-based noise estimation
algorithm Wav_Seg is consistently more accurate than Wav
algorithm. It significantly reduces the error of noise estimation
especially when the noise standard deviation is low.

! Note that the noise level is the level of the noises statistics. It is defined as
the standard deviation of noises in this paper.


http://decsai.ugr.es/&sim;javier/denoise/index.html
http://decsai.ugr.es/&sim;javier/denoise/index.html
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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Table 1
Noise estimation comparison.

Method Noise standard deviation
5 10 15 20 25 30 35 40 50
Wav 1.3536 1.0447 0.8296 0.6721 0.5504 0.4501 0.3730 0.3113 0.2303
Wav_Seg 0.8210 0.6500 0.5480 0.4476 0.3595 0.2835 0.2246 0.2140 0.2198
16 diffusion equations with these two types of diffusivity terms are
- 4= Wav equivalent to minimize the energy functionals in Eq. (4) with
= ©- Wav_Seg
T4 1 p(IVul?) = |Vul, (30)
k\
A
. |Vul?
5120 . p(|Vu\2):log<1+ o7 )’ 31
= AY
CT) .
AN .
5 4l * i respectively.
ko S We evaluate the performance of a given scale selection scheme
A . . .
£ N by the mean squared error (MSE) of the denoised image with scale
[72] . . .
$ O.S‘Dx *\ 1 (or scales) selected by this scale selection scheme. The MSE is
@ . . defined as
o Y ™S
Z 06 Os. te 1
6r ~ - b 2
e, N MSE@W) = & > wp)—u(p)> (32)
RS . RS . peQ
04t “ee. "1\__ i where u is the denoised image, u* is the original non-degraded
“vo.. ek TSN . image, and p is the pixel located in the image domain Q2. Lower
0.2 . . . . L "©--@-uu2--" MSE means better scale selection performance. We also design
5 10 15 20 25 30 35 40 45 50

Noise level

Fig. 6. Comparison between segment-based noise estimation in wavelet domain
(Wav_Seg) and MAD noise estimation in wavelet domain (Wav). The noise
estimation errors are plotted for different noise levels.

The question is, how does this segment-based noise estimation
algorithm affect the performance of MRF scale selection model. It
will be answered in the next subsection.

5.2. Scale selection comparison

In this subsection, we compare our MRF scale selection model
with the previous global scale selection schemes. We will test two
typical global scale selection schemes, i.e., SNR scheme and
correlation scheme (Corr) for comparison. We will also present
the results of the ideal case of global scale selection scheme (Opt),
in which the optimal scale is selected when the diffused image is
most similar to the original non-degraded image. Obviously, this
is the limit of the global scale selection scheme, and all of the
schemes in this category try to achieve this limit as close as
possible. To test our proposed model, we will show the results of
MREF scale selection model with the known noise variance (MRF1),
and the estimated noise variance (MRF2) by the segment-based
noise estimation algorithm, respectively.

In the experiments, we use two typical definitions of the
diffusivity term g(-) in the anisotropic diffusion equation
literatures [11,24],

1

type 1: g(|Vu))= N (28)
1
type 2 : g<|Vu|)=W' 29)

¢ is set to make the denominator of the first type of diffusivity
term non-zero, and it is set to be 0.01. The parameter Q in the
second type of diffusivity term is set as in [11]. The anisotropic

MSE ratio R to measure the relative performance between a given
scale selection scheme and the ideal case of global scale selection.
R is defined as

 MSEgen
= MSEopt |

R 33)
where MSEge, is the MSE of the denoised image obtained by
the given scale selection scheme, and MSE,; is the MSE of the
denoised image in the ideal case of global scale selection scheme.
R <1 means that the scale selection scheme is better than the
ideal case of global scale selection scheme. Obviously, for all the
global scale selection schemes, R > 1.

Tables 2 and 3 show the mean MSE values of the denoised
images with respect to increasing noise levels varying from 5 to
50. Under each noise level, the mean MSE is the average MSE
value of the denoising results of the test images. Tables 2 and 3
list the mean MSE values for anisotropic diffusion equation with
types 1 and 2 diffusivity terms. In each table, we compare the
performances of the five types of scale selection schemes,
including SNR, Corr, Opt, MRF1, and MRF2. Fig. 7 is the plot of
the MSE values. The left and right sides of Fig. 7 are performance
comparison for the anisotropic diffusion equation with types 1
and 2 diffusivity terms, respectively. Tables 2, 3 and Fig. 7 tell us
that, firstly the mean MSE values of SNR and Corr scale selection
schemes are higher than the mean MSE values in the ideal case of
global scale selection scheme. Secondly, the MRF scale selection
models (MRF1 and MRF2) achieve much lower MSE values
compared with the SNR and Corr based scale selection schemes.
Thirdly, both MRF1 and MRF2 are better than the ideal case of
global scale selection scheme in performance.

Tables 4 and 5 give the MSE ratios of the denoised images
with respect to different noise levels for diffusion equation with
types 1 and 2 diffusivity terms, respectively. The scale selection of
the denoised images is performed by SNR, Corr, MRF1 and MRF2
scale selection schemes. The last column of each table lists the mean
MSE ratios across different noise levels for these scale selection
schemes. The left and right sides of Fig. 8 are the plots of these
MSE ratios for diffusion equation with diffusivity types 1 and 2,
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Table 2

Mean MSE for type 1 diffusivity term.
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Method Noise level
5 10 15 20 25 30 35 40 50
SNR 16.258 44.144 73.950 103.556 131.045 157.090 182.585 206.726 250.402
Corr 55.094 64.255 79.535 124.524 139.796 154.457 168.390 181.588 220.706
Opt 12.412 32.656 53.715 73.988 93.084 110.977 127.791 143.627 172.796
MRF1 12.612 31.131 50.004 68.577 86.741 103.945 120.833 137.108 169.261
MRF2 13.396 31.719 50.504 68.741 86.369 103.627 112.421 137.394 169.930
Table 3
Mean MSE for type 2 diffusivity term.
Method Noise level
5 10 15 20 25 30 35 40 50
SNR 13.999 37.491 70.640 106.106 137.615 172.433 208.219 244.051 317.195
Corr 16.457 42.785 71.849 117.948 141.083 166.934 187.550 201.046 293.102
Opt 12.323 34.521 59.715 87.827 111.811 137.992 164.459 191.419 245.767
MRF1 11.909 32.511 54.834 78.844 98.945 120.530 141.695 162.591 206.032
MRF2 12.138 32.653 54.842 76.836 98.403 119.639 140.629 161.689 208.264
a b
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Fig. 7. Mean MSE of the denoised images by anisotropic diffusion filter using different scale selection schemes. The left and right sub-figures are for the diffusion equations

with types 1 and 2 diffusivity terms, respectively.

Table 4
Mean MSE ratio for type 1 diffusivity term.

Method Noise level Mean
5 10 15 20 25 30 35 40 50

SNR 1.366 1.421 1.441 1.466 1.466 1.469 1.476 1.482 1.483 1.452

Corr 3.979 1.793 1.391 1.669 1.486 1.375 1.300 1.246 1.276 1.724

MRF1 1.002 0.945 0.928 0.926 0.933 0.941 0.952 0.962 0.994 0.954

MRF2 1.053 0.959 0.935 0.930 0.933 0.940 0.900 0.972 1.003 0.958

respectively. From Tables 4 and 5, we observe that the mean MSE
ratios of SNR scheme and Corr scheme are 1.426 and 1.864 for
type 1 diffusivity term, 1.249 and 1.226 for type 2 diffusivity term.
They are all larger than 1 because these two schemes are
definitely worse than the ideal case of global scale selection
scheme. However, the mean MSE ratios of MRF1 and MRF2 are all

lower than 1 for both two types of diffusivity terms. It means that
MREF scale selection schemes (MRF1 and MRF2) are better than the
ideal case of global scale selection scheme in mean performance.

We also find that the performance of MRF2, which estimates
noise variance by the segment-based noise estimation algorithm,
is nearly same to the performance of MRF1, which is given by the
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Table 5
Mean MSE ratio for type 2 diffusion term.
Method Noise level Mean
5 10 15 20 25 30 35 40 50
SNR 1.166 1.103 1.233 1.259 1.281 1.298 1.312 1.318 1.330 1.256
Corr 1.270 1.196 1.169 1.333 1.238 1.183 1.120 1.043 1.171 1.191
MRF1 0.967 0.945 0.919 0.898 0.882 0.871 0.860 0.846 0.837 0.892
MREF2 0.982 0.947 0.920 0.883 0.882 0.866 0.857 0.847 0.851 0.893
a b
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Fig. 8. Mean MSE ratios of the denoised images by anisotropic diffusion filter using different scale selection schemes. The left and right sub-figures are for the diffusion

equations with types 1 and 2 diffusivity terms, respectively.

known noise variance. See Tables 4 and 5, the mean MSE ratios
over all the test images and noise levels for MRF1 and MRF2 is
0.948 and 0.954 for type 1 diffusivity term, 0.895 and 0.898 for
type 2 diffusivity term. It means that, the performance deficiency
is very limited using the estimated noise variance by segment-
based noise estimation algorithm. The MRF scale selection model
with the estimated noise variance is still better than the ideal case
of global scale selection scheme in performance.

5.3. Parameter setting

We now discuss the parameter settings for the MRF scale
selection model. The first parameter is the number of frames N in
the scale space, and the second parameter is the regularization
parameter 4 in Eq. (25).

5.3.1. Number of frames

Firstly, we discuss the setting of number of frames N in the
scale space. The setting of N is equivalent to the setting of the
scale interval At between consecutive frames due to their
relationship At =T/N, in which T has been discussed in Section 2.

We set N from the noisy/original image pairs over the test set.
For a given pair of noisy/original images, the scale interval At
should be able to distinguish the different scales of the segments
appeared in the noisy image. Here, the optimal scale of a segment
is defined as the optimal stopping time when the diffused
segment is most similar to the original non-degraded segment
in MSE measurement. Inspired by this idea, a histogram of

scale differences over pairs of segments is computed in the
following set:

{Itge(Sp)—tge(SIs i € [1,K1i #j, and tg(S;) # tge(S))} (34

where t,(S;) is the optimal scale of the segment S;. Then we set At
as the value of bin where the integral of the histogram is 0.05. The
number of frames is further set to N = [T/At]. In this way, 95% of
the scale differences between segments in the noisy image can be
distinguished.

We have estimated the mean scale interval and mean number
of frames on the test set under different noise levels. These data
are listed in Table 6. For both types 1 and 2 diffusivity terms, the
mean scale interval increases with respect to noise levels.
However, the mean number of frames is relatively stable with
respect to the noise level, because the maximal scale T of the scale
space also increases for larger noise level. So we set N to be the
mean number of frames across different images and different
noise levels, that is, 35 for the type 1 diffusivity term, and 41 for
the type 2 diffusivity term.

We also investigate the influence of N on the scale selection
performance. This is shown in Fig. 9, it plots the mean MSE over
the test set with increasing N. We use the diffusion equation with
the type 1 diffusivity term and the added noise level is 30. When
N increases from 5 to 100, the mean MSE of the denoised images
is not sensitive to N, and varies in a small interval [111.34,112.78].
Moreover, larger N does not always mean higher performance.
That is because, larger N or smaller At may cause the scale
selection problem to be more sensitive to the errors of scale
labeling introduced by the energy term defined on individual
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Table 6
Mean scale interval and mean number of frames for different noise levels.
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Diffusivity type Noise level

5 10 15 20 25 30 35 40 50
Type 1
Mean At 0.140 0.267 0.467 0.547 0.760 0.940 1.120 1.307 1.500
Mean N 35 38 34 39 35 35 35 34 38
Type 2
Mean At 0.072 0.126 0.176 0.216 0.288 0.324 0.376 0.400 0.410
Mean N 42 47 45 42 38 38 38 38 44
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Fig. 9. Influence of number of frames on denoising performance. The added noise
standard deviation is 30. The diffusion equation with the type 1 diffusivity term is
used.

segments, i.e., the first term of Eq. (25). This is similar to the over-
fitting phenomena in the problem of data classification.

5.3.2. Regularization parameter A

Next we discuss how to set the regularization parameter / in
Eq. (25). This parameter balances the scale selection costs on
individual segments and the scale coherence constraints between
neighboring segments. When setting smaller 4, it will produce
scale inconsistency between neighboring segments, and artifacts
may be introduced in the final scale space fused image. Setting
larger A will pose tighter constraints on the scale coherence,
which makes the scale labeling more reasonable. However it may
assign the same scale label to the segments at different scales. The
question now is how to design a criterion for selecting 4 to better
balance these two effects.

We select the parameter / with respect to noise level ¢ using
the following formula:

1 & ,
J(0) = rnzln{ﬁ; MSE(u;(x; A,O’))}, (35)
where u;(x; 4,0) is the denoised image for the i-th test image, given
the regularization parameter / and added noise standard devia-
tion . The optimal A* is selected when the mean MSE between
the denoised images and the non-degraded images in the test set
is minimized. This is a commonly used discriminative parameter
setting method. Table 7 lists the optimal regularization
parameters 1*(o) for discrete noise levels ¢; varying from 2 to
70, for diffusion equation with types 1 and 2 diffusivity terms,
respectively. It is shown that 1* increases with respect to noise
levels. Then for given noise level ¢y, the 1*(gg) can be estimated

Optimal / ( x 10~3) under different noise levels for types 1 and 2 diffusivity terms.

Noise level 2 5 10 15 20 25 30 35 40 50 60 70

0.01 0.05 0.09 030 14 16 20 27 44 64 83 96
012 03 08 14 16 22 24 27 30 36 42 51

A (type 1)
2 (type 2)

by second order polynomial interpolation (if o €[2,70]) or second
order polynomial extrapolation (if 6o¢[2,70]) among these data in
Table 7.

5.4. Denoising comparison

Now we compare the denoising performance of the anisotropic
diffusion filter equipped with the MRF scale selection model to
the other state-of-the-art denoising methods.

These denoising methods are introduced as follows. Total
variation (TV) denoising model [12-14] is a classical and widely
investigated image filter. It minimizes the image total variation
while constraining the statistics of the removed noises. The non-
local (NL) denoising algorithm [52] is a recently proposed
image filtering algorithm. It performs filtering for a pixel by the
expected color/gray value over the patches positioned in the
non-local image domain, and the expectation is weighted by
their similarities to the patch surrounding the pixel. In the
experiments, we set the size of non-local image region for
searching the patches as 21 x 21, the size of patch as 7 x 7, and
the filtering parameter for computing expectation weights is set
to the 10 times of noise standard deviation. The wavelet domain
Gaussian scale mixture (GSM) denoising algorithm [49]
uses Gaussian scale mixture model to fit the heavy-detailed
distributions of the wavelet coefficients. Then the restored
coefficients are inferred by Bayesian least square. We use
steerable pyramidal decomposition with five scales to get the
denoising results as in [49]. The wavelet domain GSM denoising
algorithm has been reported to achieve the state-of-the-art
performance in image denoising.

Figs. 10-12 present three examples of the denoising results by
these algorithms (see the electrical version and zoom in to
compare the results). Total variation method over-smooths the
textured regions, for example the body of ostrich in Fig. 10,
the trees in Fig. 11, and the grass in Fig. 12, but the noises in
smooth regions are not adequately smoothed out. The result of
non-local denoising algorithm has some artifacts both in the
textured and smooth regions. The wavelet domain GSM algorithm
can better balance the tasks of preserving textures and removing
noises, but it causes significant ringing artifacts in the restored
image. For the anisotropic diffusion filter combined with
MRF scale selection model (MRF), we also present the image
over-segmentation results and the scale maps on the segments
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noisy image (PSNR = 19.086)

d

non-local (PSNR = 29.078)

our result (PSNR = 30.145)

wavelet GSM (PSNR = 29.225)

Cc

total variation (PSNR = 28.934)

ground truth

Fig. 10. Image denoising results comparison (zoom in for better comparison). The PSNR value of input noisy image is 19.086.

(lighter gray-scale means larger scale). The final denoising results
show that our method can remove noises adequately in the
smooth regions and preserve the textures in textured regions at
the same time.

We also quantitatively measure the denoising performance of
these algorithms by peak signal-to-noise ratio (PSNR) on the test
images. Table 8 lists the PSNR values of results by TV, NL, GSM and
the anisotropic diffusion filter (with type 1 diffusivity term)
combined with MRF scale selection model (MRF). The last row of
Table 8 shows the mean PSNR values by these denoising methods
across different images. As we can see, both anisotropic diffusion
filter combined with the MRF scale selection model and wavelet
domain GSM achieve the best results. When the input image PSNR
is 22.11 and 19.08, our model achieves six best results among 12
natural images, and achieves the best mean PSNR values. TV
denoising model is a type of anisotropic diffusion filter with the
same defined diffusivity term as the type 1 diffusivity term
(Eq. (28)). Compared with the results of TV filter, our MRF scale
selection model significantly increases the mean performance of
anisotropic diffusion filter by 0.911 and 0.441 in mean PSNR,
when the PSNR of noisy images are 22.110 and 19.086,
respectively.

6. Conclusion

This paper presents a segment-based scale selection model for
anisotropic diffusion scale space, in which the final denoised
image is the fusion of the scale space. Scale coherence between
neighboring segments is also considered, then a MRF scale
selection model is designed finally, which is minimized by tree-
reweighted message passing algorithm. In this model, textured
region tends to be assigned smaller stopping time, and smooth
region tends to be assigned larger stopping time, so the details are
better preserved while noises are adequately smoothed out. We
experiment our model on natural images, results show that MRF
scale selection model is much better than the previous global
scale selection schemes, and also better than the ideal case of the
global scale selection scheme. Moreover, using MRF scale
selection model, the denoising performance of anisotropic diffu-
sion filter is significantly improved, and is comparable to or even
better than the state-of-the-art denoising algorithms, e.g., non-
local denoising method, total variation method and wavelet
domain Gaussian scale mixture method.

Though segments can well distinguish image smooth regions
or textured regions, some tiny details (for example the long hairs)
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noisy image (PSNR =22.110)

our result (PSNR = 28.406)

total variation (PSNR = 27.246) non-local (PSNR = 27.267)

wavelet GSM (PSNR = 28.246) ground truth

Fig. 11. Image denoising results comparison (zoom in for better comparison). The PSNR value of input noisy image is 22.110.
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noisy input (PSNR = 22.110) over-segmentation

scale map our result (PSNR = 28.554)

total variation (PSNR = 27.788) non-local (PSNR = 28.066)

wavelet GSM (PSNR = 28.767) ground truth

Fig. 12. Image denoising results comparison (zoom in for better comparison). The PSNR value of input noisy image is 22.110.
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Table 8

PSNR by different denoising methods.

J. Sun, Z. Xu / Pattern Recognition 43 (2010) 2630-2645

Image PSNR=22.110 PSNR=19.086
TV NL GSM MRF TV NL GSM MRF

(a) 30.400 31.358 32.667 31.650 29.473 29.239 30.910 29.932
(b) 28.853 29.883 30.305 30.084 27.644 27.666 28.220 27.981
(c) 30.862 30.888 31.113 31.730 28.934 29.078 29.225 30.145
(d) 28.840 29.218 29.441 29.873 27.806 27.061 27.204 28.153
(e) 29.163 29.665 31.567 30.788 28.187 27.637 29.493 28.934
(f) 27.898 27.838 29.266 28.920 26.406 26.065 27.072 27.080
(g) 27.788 28.066 28.767 28.554 26.553 26.525 27.040 26.853
(h) 27.699 28.035 27.997 28.167 26.235 26.167 25.731 26.202
(i) 36.917 35.549 36.984 37.505 35.137 32.756 34.728 35.393
(6)] 27.652 27.405 28.359 28.328 26.214 25.848 26.436 26.562
(k) 27.246 27.267 28.246 28.406 26.067 25.606 25.839 26.549
(0] 28.529 28314 28.518 29.241 27.067 26.464 27.700 27.459
Mean 29.360 29.456 30.269 30.271 28.052 27.509 28.300 28.436

are still hard to be represented. This makes our scale selection
model not fine enough for some small details, and affects the final
denoising performance. So it is necessary to investigate more
accurate image super-pixel representation in the future. We also
believe that, this model can be applied to other parameter
dependent denoising algorithms, in which parameter can be seen
as the scale. So applying this framework to other scale dependent
algorithms is also our research direction.
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